Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958560

ABSTRACT

Hypercytokinemia, or cytokine storm, often complicates the treatment of viral and bacterial infections, including COVID-19, leading to the risk of thrombosis. However, the use of currently available direct anticoagulants for the treatment of COVID-19 patients is limited due to safety reasons. Therefore, the development of new anticoagulants remains an urgent task for organic and medicinal chemistry. At the same time, new drugs that combine anticoagulant properties with antiviral or antidiabetic activity could be helpfull in the treatment of COVID-19 patients, especially those suffering from such concomitant diseases as arterial hypertension or diabetes. We have synthesized a number of novel substituted azoloazines, some of which have previously been identified as compounds with pronounced antiviral, antibacterial, antidiabetic, antiaggregant, and anticoagulant activity. Two compounds from the family of 1,2,4-triazolo[1,5-a]pyrimidines have demonstrated anticoagulant activity at a level exceeding or at least comparable with that of dabigatran etexilate as the reference compound. 7,5-Di(2-thienyl)-4,5-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine has shown the highest ability to prolong the thrombin time, surpassing this reference drug by 2.2 times. This compound has also exhibited anticoagulant activity associated with the inhibition of thrombin (factor IIa). Moreover, the anticoagulant effect of this substance becomes enhanced under the conditions of a systemic inflammatory reaction.


Subject(s)
Anticoagulants , COVID-19 , Humans , Anticoagulants/adverse effects , Dabigatran/pharmacology , Hypoglycemic Agents , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
Life (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295082

ABSTRACT

Quinazolines are a rich source of bioactive compounds. Previously, we showed NHE-1 inhibitory, anti-inflammatory, antiplatelet, intraocular pressure lowering, and antiglycating activity for a series of quinazoline-2,4(1H,3H)-diones and quinazoline-4(3H)-one guanidine derivatives. In the present work, novel N1,N3-bis-substituted quinazoline-2,4(1H,3H)-dione derivatives bearing two guanidine moieties were synthesized and pharmacologically profiled. The most potent NHE-1 inhibitor 3a also possesses antiplatelet and intraocular-pressure-reducing activity. Compound 4a inhibits NO synthesis and IL-6 secretion in murine macrophages without immunotoxicity and alleviates neutrophil infiltration, edema, and tissue lesions in a model of LPS-induced acute lung injury. Hence, we considered quinazoline derivative 4a as a potential agent for suppression of cytokine-mediated inflammatory response and acute lung injury.

3.
Molecules ; 27(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35011506

ABSTRACT

Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5-15.2 times as compared to LPS-treated blood.


Subject(s)
Anticoagulants/pharmacology , Azo Compounds/chemistry , Blood Coagulation/drug effects , Hemorrhage/drug therapy , Pyrimidines/chemistry , Animals , Anticoagulants/chemistry , Hemorrhage/chemically induced , Lipopolysaccharides/toxicity , Male , Rabbits , Rats
4.
Sci Rep ; 11(1): 24380, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934125

ABSTRACT

The Na+/H+ exchanger isoform 1 (NHE-1) attracts ongoing attention as a validated drug target for the management of cardiovascular and ocular diseases owing to cytoprotective, anti-ischemic and anti-inflammatory properties of NHE-1 inhibitors. Herein we report novel NHE-1 inhibitors realized via functionalization of N1-alkyl quinazoline-2,4(1H,3H)-dione and quinazoline-4(3H)-one with N-acylguanidine or 3-acyl(5-amino-1,2,4-triazole) side chain. Lead compounds show activity in a nanomolar range. Their pharmacophoric features were elucidated with neural network modeling. Several compounds combine NHE-1 inhibition with antiplatelet activity. Compound 6b reduces intraocular pressure in rats and effectively inhibits the formation of glycated proteins. Compounds 3e and 3i inhibit pro-inflammatory activation of murine macrophages, LPS-induced interleukin-6 secretion and also exhibit antidepressant activity similar to amiloride. Hence, novel compounds represent an interesting starting point for the development of agents against cardiovascular diseases, thrombotic events, excessive inflammation, long-term diabetic complications and glaucoma.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Inflammation/drug therapy , Macrophages, Peritoneal/drug effects , Quinazolines/chemistry , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Female , Inflammation/immunology , Inflammation/pathology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...